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1. Background and Motivation

• Argumentation one of the highly active areas in nonmon

• Dung’s abstract argumentation frameworks (AFs) a gold standard
in argumentation

• Provide account of how to select acceptable arguments given
arguments with attack relation

• Abstract away from everything but attacks: calculus of opposition

• Can be instantiated in may different ways

• Useful analytical tool and target system for translations
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Argumentation frameworks: 1 slide crash course

• Graph, nodes are arguments, links represent attack
• Intuition: node accepted unless attacked
• Arguments not further analyzed

Example

b c d ea

• Semantics select acceptable sets E of arguments (extensions):
• grounded: (1) accept unattacked args, (2) delete args attacked by

accepted args, (3) goto 1, stop when fixpoint reached.
• preferred: maximal conflict-free sets attacking all their attackers
• stable: conflict free sets attacking all unaccepted args.
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Common Use of AFs in Argumentation

• Prototypical example: Prakken (2010)

• Given: KB consisting of defeasible rules, preferences, types of
statements, proof standards etc.

• Available information compiled into adequate arguments and
attacks

• Resulting AF provides system with choice of semantics

KB AF

?

• Our goal: bring target system closer to original KB, so as to make
compilation easy

• Like AFs, new target systems must come with semantics!
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Restrictions of AFs

Example

b c d ea

• fixed meaning of links: attack
• fixed acceptance condition for args: no parent accepted
• want more flexibility:

1 links supporting arguments/positions
2 nodes not accepted unless supported
3 flexible means of combining attack and support

• from calculus of opposition to calculus of support and opposition
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Basic research questions

• KR: quest for good combinations of expressiveness, complexity,
conceptual simplicity.

• Can Dung AFs be made more expressive?

• Without increasing computational complexity?

• Such that gain in expressiveness outweighs loss of simplicity?

• Provide positive answer to 1, 2; evidence that answer to 3 is
positive.

• Initial interest: proof standards; 2 steps: (1) add acceptance
conditions, (2) define them in domain independent way.

Abstract Dialectical Framework
=

Dependency Graph + Acceptance Conditions
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Basic idea

c

a

d

b

An Argumentation Framework

G. Brewka (Leipzig) Tools for Argumentation JELIA 2010 8 / 38



Basic idea

c

a

d

b

> ¬a

¬b ¬b ∧ ¬c

An Argumentation Framework
with explicit acceptance conditions
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Basic idea

c

a

d

b

> a

¬b b ∨ c

A Dialectical Framework
with flexible acceptance conditions
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Remark about notation

• Acceptance conditions: Boolean functions

• Take in/out assignment to parents to generate in/out assignment
of child

• Conveniently represented as propositional formulas

• Sometimes functional notation easier to handle

• Switch between the two, representing assignments by the set of
their in nodes when using the latter

so Cs(R) = in/out will mean:
if R are all the s-parents being in, then s is in/out
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2. ADFs: The Formal Framework

• Like Dung, use graph to describe dependencies among nodes.
• Unlike Dung, allow individual acceptance condition for each node.
• Assigns in or out depending on status of parents.

Definition
An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where
• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {in,out}, one

for each statement s. Cs is called acceptance condition of s.

Propositional formula representing Cs denoted Fs.
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Example

Person innocent, unless she is a murderer.
A killer is a murderer, unless she acted in self-defense.
Evidence for self-defense needed, e.g. witness not known to be a liar.

l w

s k

m i

− +

− +
−

w and k known (in), l not known (out)
Other nodes: in iff all + parents in, all - parents out .

Propositionally:
w : >, k : >, l : ⊥, s : w ∧ ¬l , m : k ∧ ¬s, i : ¬m
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Dung frameworks: a special case

• AFs have attacking links only and a single type of nodes.

• Can easily be captured as ADFs.

• A = (AR,attacks). Associated ADF DA = (AR,attacks,C):
for all s ∈ AR, Cs(R) = in iff R = ∅.

• Cs as propositional formula:
Fs = ¬r1 ∧ . . . ∧ ¬rn, where ri are the attackers of s.
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Models

Definition
Let D = (S,L,C) be an ADF. M ⊆ S is a model of D if for all s ∈ S:
s ∈ M iff Cs(M ∩ par(s)) = in.

Less formally: if a node is in iff its acceptance condition says so.

A first result:
Let A = (AR,attacks) be an AF, DA = (S,L,C) its associated
dialectical framework. E ⊆ AR stable extension of A iff E model of DA.

For more general ADFs, models and stable models will be different.
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Example

Consider D = (S,L,C) with S = {a,b}, L = {(a,b), (b,a)}:

a b

• For Ca(∅) = Cb(∅) = in and Ca({b}) = Cb({a}) = out
(Dung AF): two models, M1 = {a} and M2 = {b}.

• For Ca(∅) = Cb(∅) = out and Ca({b}) = Cb({a}) = in
(mutual support): M3 = ∅ and M4 = {a,b}.

• For Ca(∅) = Cb({a}) = out and Ca({b}) = Cb(∅) = in
(a attacks b, b supports a): no model.

When C is represented as set of propositional formulas F (s), then
models are just propositional models of {s ≡ F (s) | s ∈ S}.
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Grounded semantics

Definition
For D = (S,L,C), let ΓD(A,R) = (acc(A,R), reb(A,R)) where

acc(A,R) = {r ∈ S|A ⊆ S′ ⊆ (S \ R)⇒ Cr (S′ ∩ par(r)) = in}
reb(A,R) = {r ∈ S|A ⊆ S′ ⊆ (S \ R)⇒ Cr (S′ ∩ par(r)) = out}.

ΓD monotonic in both arguments, thus has least fixpoint. E is the
well-founded model of D iff for some E ′ ⊆ S, (E ,E ′) least fixpoint of ΓD.

First (second) argument collects nodes known to be in (out). Starting
with (∅, ∅), iterations add r to first (second) argument whenever status
of r must be in (out) whatever the status of undecided nodes.

Generalizes grounded semantics, more precisely:
ultimate well-founded semantics by Denecker, Marek, Truszczyński.

G. Brewka (Leipzig) Tools for Argumentation JELIA 2010 17 / 38



Stable models and bipolar ADFs

• Stable models in LP exclude self-supporting cycles
• May appear in ADF models, not captured by minimality.

Example
Let D = (S,L,P) with S = {a,b, c}, L = {(a,b), (b,a), (b, c)}:

a b c

Ca(∅) = Cb(∅) = out and Ca({b}) = Cb({a}) = in (mutual support),
Cc(∅) = in and Cc({b}) = out (attack).
M = {a,b} model, however a in because b is, b in because a is.

• Need notion of supporting link
• Apply construction similar to Gelfond/Lifschitz reduct.
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Bipolar ADFs

Definition
Let D = (S,L,C) be an ADF. A link (r , s) ∈ L is

1 supporting: for no R ⊆ par(s), Cs(R) = in and Cs(R ∪ {r}) = out ,
2 attacking: for no R ⊆ par(s), Cs(R) = out and Cs(R ∪ {r}) = in.

• D is called bipolar if all of its links are supporting or attacking.
• D is called monotonic if all of its links are supporting.
• If D is monotonic, then it has a unique least model.
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Stable models

Definition
Let D = (S,L,C) be a BADF. A model M of D is a stable model if M is
the least model of the reduced ADF DM obtained from D by

1 eliminating all nodes not contained in M together with all links in
which any of these nodes appear,

2 eliminating all attacking links,
3 restricting the acceptance condition Cs for each remaining node s

to the remaining parents of s.

Remark: for BADFs representing Dung AFs, models and stable
models coincide.
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Example

• Consider D where a supports b, b supports a, and b attacks c:
a is in iff b is and vice versa. Moreover, c is in unless b is.

a b c

• Get two models: {a,b} and {c}. Only the latter is expected.
• The reduct of D wrt {a,b} is ({a,b}, {(a,b), (b,a)}, {Ca,Cb})

where Ca,Cb are as described above. Reduct has ∅ as least
model. {a,b} thus not stable.

• On the other hand, the reduct D{c} has no link at all. According to
its acceptance condition c is in; we thus have a stable model.
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Preferred semantics

• Dung: preferred extension = maximal admissible set.

• Admissible set: conflict-free, defends itself against attackers.

• Can show: E admissible in A = (AR,att) iff for some R ⊆ AR
• R does not attack E , and
• E stable extension of (AR-R,att ∩ (AR-R × AR-R)).

Definition
Let D = (S,L,C), R ⊆ S. D-R is the BADF obtained from D by

1 deleting all nodes in R together with their proof standards and
links they are contained in.

2 restricting proof standards of remaining nodes to remaining
parents.
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Preferred semantics, ctd.

Definition

Let D = (S,L,C) be a BADF. M ⊆ S admissible in D iff there is R ⊆ S
such that

1 no element in R attacks an element in M, and
2 M is a stable model of D-R.

M is a preferred model of D iff M is (inclusion) maximal among the sets
admissible in D.

Results

• BADFs have at least one preferred model.
• Each stable model is a preferred model.
• Generalize preferred extensions of AFs adequately.
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Complexity

D is ADF, acceptance conditions given as propositional formulas:
• Deciding whether M is well-founded model of D coNP-hard.
• Deciding whether D is bipolar coNP-hard.

D is BADF with supporting links L+ and attacking links L−:

• Deciding whether M is well-founded model of D polynomial.
• Deciding whether s is contained in some (resp. all) stable models

of D NP-complete (resp. coNP-complete).
• Deciding whether s is contained in some (resp. all) preferred

models of D NP-complete (resp. ΠP
2 -complete).

Bottom line: no increase in complexity once attacking/supporting links
are known.
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Relationship to LPs

• Cannot represent LP rules as direct dependencies among atoms:

{c ← a,not b; c ← not a,b}

• Links (a, c) and (b, c) neither supporting nor attacking, no BADF.
• Get BADF if rule explicitly represented as additional node:

a

b

r1

r2

c

• Resulting ADFs bipolar⇒ any of the defined semantics works.
• Models in one-to-one correspondence (upto rule nodes).
• In principle, “bipolarization" possible for arbitrary ADFs, but

exponential blowup - unlike for LP rules.
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3. Weights, preferences and legal proof standards

• So far: acceptance conditions defined via actual parents.
Now: via properties of links represented as weights.

• Add function w : L→ V , where V is some set of weights.

• Simplest case: V = {+,−}. Possible acceptance conditions:
• Cs(R) = in iff no negative link from elements of R to s,
• Cs(R) = in iff no negative and at least one positive link from R to s,
• Cs(R) = in iff more positive than negative links from R to s.

• More fine grained distinctions if V is numerical:
• Cs(R) = in iff sum of weights of links from R to s positive,
• Cs(R) = in iff maximal positive weight higher than maximal

negative weight,
• Cs(R) = in iff difference between maximal positive weight and

(absolute) maximal negative weight above threshold.
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Legal Proof Standards: Farley and Freeman

Introduced (1995) model of legal argumentation which distinguishes 4
types of arguments:

• valid arguments based on deductive inference,
• strong arguments based on inference with defeasible rules,
• credible arguments where premises give some evidence,
• weak arguments based on abductive reasoning.

By using values V = {+v ,+s,+c,+w ,−v ,−s,−c,−w} we can
distinguish pro and con links of corresponding types.
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Farley and Freeman’s proof standards

• Scintilla of Evidence: at least one weak, defendable argument.
Cs(R) = in iff ∃r ∈ R : w(r , s) ∈ {+v ,+s,+c,+w}.

• Dialectical Validity: at least one credible, defendable argument
and the other side’s arguments are all defeated: Cs(R) = in iff

• ∃r ∈ R : w(r , s) ∈ {+v ,+s,+c, } and
• w(t , s) 6∈ {−v ,−s,−c,−w} for all t ∈ R.

• Preponderance of Evidence: at least one weak, defendable
argument that outweighs the other side’s argument: Cs(R) = in iff

• ∃r ∈ R : w(r , s) ∈ {+v ,+s,+c,+w} and
• ¬∃r ∈ R : w(r , s) = −v and
• ∃r ∈ R : w(r , s) = −s implies ∃r ′ ∈ R : w(r ′, s) = +v and
• ∃r ∈ R : w(r , s) = −c implies ∃r ′ ∈ R : w(r ′, s) ∈ {+v ,+s} and
• ∃r ∈ R : w(r , s) = −w implies ∃r ′ ∈ R : w(r ′, s) ∈ {+v ,+s,+c}.

etc.
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Prioritized ADFs

• Another way of defining acceptance: qualitative preferences
among a node’s parents.

• Let D = (S,L,C). Assume for each s ∈ S strict partial order >s
over parents of s.

• Let Cs(R) = in iff for each attacking node r ∈ R there is a
supporting node r ′ ∈ R such that r ′ >s r .

• Node out unless joint support more preferred than joint attack.

• Can reverse this by defining Cs(R) = out iff for each supporting
node r ∈ R there is an attacking node r ′ ∈ R such that r ′ >s r .

• Now node in unless its attackers are jointly preferred.

• Can have both kinds in single prioritized ADF.
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4. An Application: Reconstructing Carneades

• Advanced model of argumentation (Gordon, Prakken, Walton 07)
• Proof standards: scintilla of evid., preponderance of evid., clear

and convincing evid., beyond reas. doubt and dial. validity
• Some paraconsistency at work
• Major restriction: no cycles (case where Dung semantics coincide)

a1

There is a contract.

a2

a3

The agreement 
is in writing.

a4

There is
 an agreement.

a5

The agreement is for
 the sale of real estate.

One of the parties
 is a minor.

The agreement
 was by email. There is a deed.
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Carneades: Basic Definitions

• An argument is a tuple 〈P,E , c〉 with premises P, exceptions E
(P ∩ E = ∅) and conclusion c. c and elements of P, E are literals.

• An argument evaluation structure (CAES) is a tuple
S = 〈args,ass,weight, standard〉, where

• args is an acyclic set of arguments,
• ass is a consistent set of literals,
• weight assigns a real number to each argument, and
• standard maps propositions to a proof standard.

• 〈P,E , c〉 ∈ args is applicable in S iff
• p ∈ P implies p ∈ ass or [p 6∈ ass and p acceptable in S], and
• p ∈ E implies p 6∈ ass and [p ∈ ass or p is not acceptable in S].
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Carneades: Acceptability

A proposition p is acceptable in S iff:
• standard(p) = se and there is an applicable argument for p,
• standard(p) = pe, p satisfies se, and max weight assigned to

applicable argument pro p greater than the max weight of
applicable argument con p,

• standard(p) = ce, p satisfies pe, and max weight of applicable pro
argument exceeds threshold α, and difference between max
weight of applicable pro arguments and max weight of applicable
con arguments exceeds threshold β,

• standard(p) = bd , p satisfies ce, and max weight of the applicable
con arguments less than threshold γ,

• standard(p) = dv , and there is an applicable argument pro p and
no applicable argument con p.
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Translation

Example:

a = 〈{bird}, {peng,ostr}, flies〉 with weight(a) = 0.8 translates to:

bird

ostr

peng

a

flies

flies

(+,0.8)

(−,0.8)

+

−

−
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Translation II

Acceptance condition for argument nodes: Cn(R) = in iff

(1) for all pi with w(pi ,a) = +, pi ∈ ass or [pi 6∈ ass and pi ∈ R], and
(2) for all ei with w(ei ,a) = −, pi 6∈ ass and [pi 6∈ R or pi ∈ ass].

Acceptance conditions for proposition nodes: Cm(R) = in iff

s = se: [1] for some r ∈ R, w(r ,m) = (+,n)
s = pe: [1] and

[2] max{n | t ∈ R,w(t ,m) = (+,n)} > max{n | t ∈ R,w(t ,m) = (−,n)}
s = ce: [1] and [2] and

[3] max{n | t ∈ R,w(t ,m) = (+,n)} > α and
[4] max{n | t ∈ R,w(t ,m) = (+,n)}−

max{n | t ∈ R,w(t ,m) = (−,n)} > β.
etc.

Theorem: arg node in iff argument applicable; prop node in iff proposition
acceptable (independently of chosen semantics)
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Why a Reconstruction?

• shows generality of ADFs: Dung and Carneades special cases
• puts Carneades on safe formal ground
• allows us to lift restriction of Carneades to acyclic graphs

a1 = 〈∅, {It},Gr〉,a2 = 〈∅, {Gr}, It〉.

Gr a1 It

Gr a2 It

(−,n1)

(+,n1) (+,n2)

(−,n2)

−

−
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5. Conclusions

• Presented ADFs, a powerful generalization of Dung frameworks.

• Flexible acceptance conditions for nodes model variety of link and
node types.

• Grounded semantics extended to arbitrary ADFs.

• Stable and preferred semantics need restriction to bipolar ADFs.

• Encouraging complexity results.

• Weighted ADFs allow for convenient definition of domain
independent proof standards.

• Easy to integrate qualitative preferences.

• Reconstructed Carneades, thus lifting its acyclicity restriction.
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How about flattening?

• Can ADFs be compiled to AFs such that the semantics coincide
(for old nodes)?

• Yes, in principle.

• For node n introduce nodes representing subsets of its parents.
• Whenever Cn(R) = out add attack (R,n).
• For parent s add node sout and attack (s, sout ).
• Add attacks (s,R) whenever s 6∈ R and (sout ,R) whenever s ∈ R.

• Exponential blowup, thus not really interesting.

• Can we do any better? Open question.
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Future Work

• Generalize other semantics for Dung frameworks, e.g. semi-stable
or ideal semantics.

• Investigate computational methods for ADFs

• can available AF labeling methods be adjusted?

• splitting results for ADFs?

• Demonstrate suitability of BADFs as analytical and semantical
tools in argumentation.

THANK YOU!
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